1-11 класс
  • 1-11 класс
  • 1 класс
  • 2 класс
  • 3 класс
  • 4 класс
  • 5 класс
  • 6 класс
  • 7 класс
  • 8 класс
  • 9 класс
  • 10 класс
  • 11 класс
Выберите класс
Предметы
ГДЗ по Алгебре 7 Класс Учебник 📕 Макарычев — Все Части
Алгебра
7 класс учебник Макарычев
7 класс
Авторы
Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова, С. А. Теляковский
Тип книги
Учебник
Год
2015-2024
Описание

Учебник Ю.Н. Макарычева «Алгебра 7 класс» давно зарекомендовал себя как одно из лучших пособий по алгебре, которое одинаково эффективно помогает ученикам освоить сложные темы, а учителям — грамотно организовать уроки.

Ключевые преимущества учебника:

1. Продуманная структура — от теории с понятными объяснениями и примером применения до практических заданий.
2. Широкий выбор заданий — от лёгких упражнений до задач, развивающих аналитическое мышление.
3. Практическая ценность— задачи с опорой на жизненные ситуации делают материал ближе к реальности.
4. Подробные объяснения— пошаговая подача сложных тем облегчает освоение ключевых концепций.
5. Экзаменационный тренинг — в конце разделов представлены задания для подготовки к контрольным работам.

Пособие Макарычева не только учит математике, но также развивает логику, аналитическое мышление и целеустремлённость. Для успешного изучения алгебры и уверенного выполнения задач этот учебник станет идеальным выбором.

ГДЗ по Алгебре 7 Класс Номер 588 Макарычев — Подробные Ответы

Задача:

Найдите значение многочлена:
а) 5x⁶ — 3x² + 7 — 2x⁶ — 3x⁶ + 4x² при x = -10;
б) 4a²b — ab² — 3a²b + ab² — ab + 6 при a = -3, b = 2.

Краткий ответ:

а) 5x⁶ — 3x² + 7 — 2x⁶ — 3x⁶ + 4x² = x² + 7
x = -10 -> (-10)² + 7 = 100 + 7 = 107

б) 4a²b — ab² — 3a²b + ab² — ab + 6 = a²b — ab + 6
a = -3
b = 2
(-3)² * 2 — (-3) * 2 + 6 = 18 + 6 + 6 = 30

Подробный ответ:

а) 5x⁶ — 3x² + 7 — 2x⁶ — 3x⁶ + 4x² при x = -10

Сначала упростим многочлен. В выражении есть три члена с x⁶: 5x⁶, -2x⁶ и -3x⁶. Складываем их коэффициенты: 5 — 2 — 3 = 0. Это означает, что все члены с x⁶ взаимно уничтожаются.

Далее, у нас есть два члена с x²: -3x² и +4x². Складываем их коэффициенты: -3 + 4 = 1. Таким образом, остается x².

Остальные части выражения — это просто число +7.

После упрощения, многочлен сводится к x² + 7.

Теперь подставим x = -10 в упрощенное выражение: x² + 7 = (-10)² + 7. Вычисляем (-10)²: это равно 100, так как квадрат отрицательного числа — положительное число. Теперь сложим: 100 + 7 = 107.

Таким образом, значение выражения при x = -10 равно 107.

б) 4a²b — ab² — 3a²b + ab² — ab + 6 при a = -3, b = 2

Сначала упростим многочлен. В выражении есть два члена с a²b: 4a²b и -3a²b. Складываем их коэффициенты: 4 — 3 = 1. Таким образом, остается a²b.

Члены с ab² взаимно уничтожаются: ab² — ab² = 0.

Теперь у нас есть упрощенное выражение: a²b — ab + 6.

Подставим значения a = -3 и b = 2: a²b = (-3)² * 2 = 9 * 2 = 18. ab = (-3) * 2 = -6.

Теперь сложим: a²b — ab + 6 = 18 + (-(-6)) + 6.

Вычисляем окончательное значение: 18 + 6 + 6 = 30.

Таким образом, значение выражения при a = -3 и b = 2 равно 30.


Алгебра

Общая оценка
4.5 / 5
Комментарии
Другие предметы